Db2 and Jupyter Notebooks

George Baklarz
Db2 Digital Technical Engagement

1 IBM Cloud

2

Legal Disclaimer

Copyright © IBM Corporation 2019 All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication, or disclosure restricted by GSA ADP Schedule Contract with IBM Corporation

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE MADE TO
VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON CURRENT THINKING REGARDING TRENDS AND
DIRECTIONS, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. FUNCTION DESCRIBED HEREIN MY NEVER BE DELIVERED BY IBM. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY
OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY
WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY
AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR SOFTWARE.

IBM, the IBM logo, ibm.com and Db2 are trademarks or registered trademarks of International Business Machines Corporation in the United States, other
countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™),
these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also
be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml

IBM Cloud

http://www.ibm.com/legal/copytrade.shtml

3

Agenda

» \What are Jupyter Notebooks?
» S0 Why do | care?

= Integrating Db2 into Notebooks
— Up and Running
— SQL Support
— Advanced Features
» Resources to help get you started

IBM Cloud

4

Jupyter Notebooks

= Jupyter notebooks are based on IPython which started in development in the
2006/7 timeframe

» The existing Python interpreter was limited in functionality and work was started to create
a richer development environment

» By 2011 the development efforts resulted in IPython being released
(http://blog.fperez.org/2012/01/ipython-notebook-historical.html)

= Markdown Is used to create the "text" of the notebook
= Code lines can contain:

— Python

— Magic commands (more on this later)

— Java, C, GolLang, and a variety of other languages
= Allows interactive development and prototyping

IBM Cloud

http://blog.fperez.org/2012/01/ipython-notebook-historical.html
http://blog.fperez.org/2012/01/ipython-notebook-historical.html
http://blog.fperez.org/2012/01/ipython-notebook-historical.html
http://blog.fperez.org/2012/01/ipython-notebook-historical.html
http://blog.fperez.org/2012/01/ipython-notebook-historical.html

What do Jupyter Notebooks Look Like?

= | ooks a lot like Microsoft Word, but with live code

Regular Express Flag Values

Regular expression functions have a flag specification that can be used to change the behavior of the search. There are six possible flags that can be specified as
part of the REGEXP command:

Flag Purpose

¢ Specifies that matching is case-sensitive (the default value)

i Specifies that matching is case insensitive

— Specifies that the input data can contain more than one line. By default, the '~" in a pattern matches only the start of the input string; the
" inapatternmaichesonl ytheendo ftheinputsiring. I fthis flagisser,""” and " also matches at the start and end of each line within the input string.
n Specifies that the '’ character in a pattern matches a line terminator in the input string. By default, the ' character in a pattern does not match a line terminator. A carriage-return and line-feed pair in the input

string behaves as a single-line terminator, and matches a single "" in a pattern.
s Specifies that the \' character in a pattern matches a line terminator in the input string. This value is a synonym for the 'n’ value.

X Specifies that white space characters in a pattern are ignored, unless escaped.

Back to Top

Regular Expression Search Patterns

Regular expressions use certain characters to represent what is matched in a string. The simplest pattern is a string by itself.

In [1: %¥sql

SELECT STATION FROM CENTRAL_LINE <
WHERE REGEXP_LIKE(STATION, 'Ruislip')

The pattern 'Ruislip’ will look for a match of Ruislip within the STATION column. Note that this pattern will also match 'West Ruislip’ or 'Ruislip Gardens' since we
placed no restriction on where the pattern can be found in the string. The match will also be exact (case matters). This type of search would be equivalent to using
the SQL LIKE statement:

Text

Code

5

IBM Cloud

6

Jupyter Notebook Requirement

* Runs on all popular desktop platforms
— Linux

— Mac OSX
— Windows
= Content is viewed via a web browser
— Chrome, |E, Safari, Firefox, etc...
= Jupyter can run locally on a workstation, or as part of a service
— Access Notebooks at 1localhost : 8888
= Installation images can be found at:
— https://jupyter.org/

— https://www.anaconda.com/distribution/

— Recommend that you get the full Anaconda stack which includes Python and many of the
libraries that you will need

IBM Cloud

https://jupyter.org/
https://www.anaconda.com/distribution/

Activities ¥ Google Chrome ~

Example of Complex Jupyter Notebook

TYable_of_Contents

Thu 1807
An_Introcduction _to_J

D82 _11.1_Hegular Exp
1) locathost

- =] w
& - (2]
Jjupyter Table of _Contents (unosaved) p
B + »x 5 B * v N "CH» v ~

IBM Digital Technical Engagement

Db2 11 Features and Functions

Welcome to this Db2 iab that highlights the new features of Db2 11. This sys
you are nat familiar with the use of Jupyter notebooks

tem demonstrates the new DBb2 11 features through the use of Jupyter notebooks. If
Db2 Magic commands, the following notebooks will gusde you through their usage

An Introduction to Db2 Magic Commands
Jupyter Notebooks

1t you are not familiar

Jup

th the use of

ob2 Magic command $00 In A of the
no 3 Of Python, tha folloning PoTebooks ' 1
notebock will guide you through theit
usape

D. The following
motebook provides a tutonal on basics of
sing the Db magic commands

These set of notebooks cover some of the new SO

)L functionality that was delivered In Db2 11.1. Note that twe of the noteboo

were added 1o Db2 in 10.5 and officially published in 11,1, These functions are used 1o support the MongoDB compatibility features in Db2, but are not part of the
SQL standard. If you want to use the official JSON functions then you need to use Db2 11.5

s cover the JSON functions that

Oracle, Open Source and Regular Expressions
Netezza Compatibility

Row and Column Access
Control

7 IBM Cloud

8

Why Do | Care About Jupyter Notebooks?
= Pros:

— Used extensively by researchers and data scientists
— Allows for sharing of text and code

— Encourages trial and error, and the ability to document what is happening with the code

= Cons:

— Need to understand Python (sometimes) to get things done

— No native Db2 connections in notebooks (there are packages that make things easier, but they
don't support Db2 extensions)

IBM Cloud

9

Getting Started

* Install Anaconda or Jupyter Notebooks

— Consider using Docker if you don't want to install natively
» Install the Db2 Python driver

—easy_install ibm_db

* Download the Db2 Magic Command
— https://github.com/DB2-Samples/db2jupyter
— Only one file is needed: db2.ipynb
—"Ipynb" is a Jupyter notebook
— Import the notebook into your Jupyter environment

IBM Cloud

https://github.com/DB2-Samples/db2jupyter
https://github.com/DB2-Samples/db2jupyter
https://github.com/DB2-Samples/db2jupyter

That Sounds Like a Pain...

= |nstall Docker
— See https://docs.docker.com/ for instructions

» Create a Docker container
— https://github.com/DB2-Samples/db2jupyter
— Download db2jupyter.docker into an empty directory of your choice
— Use Kitematic CLI command line, or a terminal window on Mac or Linux
« Navigate to the directory that the db2jupyter.docker file is located
* Issue the following command to create a Docker image:
docker build -t db2jupyter -f db2jupyter.docker . (€Keep the period!)
docker run --name db2jupyter -d -p 8888:8888 db2jupyter
— Use your favorite browser to navigate to localhost:8888

10 IBM Cloud

10

https://docs.docker.com/
https://github.com/DB2-Samples/db2jupyter
https://github.com/DB2-Samples/db2jupyter
https://github.com/DB2-Samples/db2jupyter

Now What?

= Start Jupyter Notebooks
» Make sure you have Db2 somewhere (or use a Docker install!)
* Navigate to your notebooks (localhost:8888)

*Import the db2.ipynb notebook, or place it in the path where your notebooks
are going to be kept

Table « X Home ! X Docker X | @ ibmcor x | + - 0O X
C @ localhost ¥ @ e :
| jupyter Quit
Files Running Clusters Nbextensions

Select items to perform actions on them.

Q

Upload ew v

~- m/ Name ¥ Last Modified File size
10 minutes ago

10 minutes ago 12.8kB

=
«Q Q Q

10 minutes ago 454kB

11 IBM Cloud
11

Loading Db2 Magic Commands

* Open up a blank notebook and enter the following command

In [1]: %run db2.ipynb

Db2 Extensions Loaded.

In []:

» Use the Jupyter "Run" button or Shift-Return to execute the code
» Some Magic Happens!

12 I1BM Cloud

12

Magic Commands

= Jupyter provides a series of Magic commands that allow for Python code or
special actions to be executed on your behalf

— For example, %system will issue a system command

*The %run db2.ipynb command will load the contents of the db2.ipynb file and
create a new %sql and %%sqgl command

*The %sqgl command is used for single line commands while %%sql is meant to
run a block of SQL
— Only the results of a %sqgl command can be assigned to a variable
— Python variable subtitution using {varname} only works with %sql commands

— Single %sqgl commands can be extended over multiple lines using the backslash \
character at the end of line

— Multiple statements in a %%sql block use a semi-colon as a delimiter

13 IBM Cloud
n 13

Connecting to Db2

*Once you have loaded the Db2 magic commands, you are read to get
connected

*The connection syntax is similar to Db2 CLP with a few twists

%sqgl CONNECT TO database
USER DB2INST1 USING db2instl
HOST 172.5.2.132 PORT 50000 SSL

%sql CONNECT CREDENTIALS name
%sql CONNECT PROMPT

%sql CONNECT RESET

%sql CONNECT CLOSE

14 I1BM Cloud

14

Connecting to Db2
*Once you have loaded the Db2 magic commands, you are read to get connected
* The connection syntax is similar to Db2 CLP with a few twists

%sql CONNECT TO database
USER DB2INST1 USING db2instl
HOST 172.5.2.132 PORT 50000 SSL

%Sql CONNECT CREDENTIALS name
%sql CONNECT PROMPT
%sql CONNECT

15 |IBM Cloud
15

Connecting With a Prompt

*» Connecting with PROMPT will ask you all the questions

In [*]: %sqgl connect prompt

Enter the database connection details (Any empty value will cancel t
he connection)

Enter the database name:

*To stop at any time enter a null value

-

16

IBM Cloud
a 16

Connecting With Credentials

=" Credentials come from a Cloud instance of Db2

New credential @ :

xxxxx

ooy .
g |2 3 8§

= Assign the credentials to a Python variable

myid = {"db": "BLUDB", "password":"iforgotit",
%sql CONNECT CREDENTIALS myid

.}

17 IBM Cloud

17

Connecting With Values

»Supply all of the values needed to connect to the database

%sql CONNECT TO database USER DB2INST1 USING db2inst1
HOST 172.5.2.132 PORT 50000 [SSL]

*|If you connected previously, the %sqgl CONNECT by itself will use the
connection information that is saved on disk

»|If any values are missing, they are supplied from a previous connection
— %sql connect to sample
— Any previous user/using values will be supplied on your behalf

*Implicit connects are done for you when you execute the first %sql statement

18 I1BM Cloud

18

Bad Connection

=You will get full diagnostic information back from

the connection
— You can decide if the information is useful!

In [3]: %sql connect to sample user db2insft using db2instl

[IBM][CLI Driver] SQL30081N A communication error has been detected.
Communication protocol being used: "TCP/IP". Communication API being used:
"SOCKETS". Location where the error was detected: "1.1.1.1". Communication
function detecting the error: "connect". Protocol specific error code(s): "110",
e e SQLSTATE=08001 SQLCODE=-30081

19 IBM Cloud
19

Diagnostic Information

*You can always get the diagnostic information from three built-in variables
— sglcode — Last sglcode generated
— s(glstate — Last sglstate generated
— sqlerror — Last message generated

» Useful if you are using programming logic

In [111]: %sql SELECT NOTHING FROM UNKNOWN

SQLO204N "DB2INST1.UNKNOWN" is an undefined name. SQLSTATE=42704
SQLCODE=-204

Command completed.

In [112]: sqlcode
Outl112]: -2p4

In [113]: sqlstate
Out[113]: ‘42704

In [115]: sqlerror

Out[115]: 'SQL@204N "DB2INST1.UNKNOWN" is an undefined name. SQLSTATE=42704 SQ
LCODE=-204"

20 IBM Cloud

Successful Connection

= A successful connection will also return a message

In [5]: %sql connect to sample host localhost port 50000 \

user DB2INST1 using db2instl

Connection successful.

= Note that %sqgl commands can only span one line

— To continue over one line, you must use the backslash \ character
— Userids and Passwords are case sensitive

*You can now connect in any notebook just using connect

In [6]: %sgl connect

Connection successful.

21 IBM Cloud

21

Now What Can | Do?

*Once you have connected, you can run SQL!

In [7]: %sql select *» from employee
Qut([7]:
EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

0 000010 CHRISTINE | HAAS A0O 3978 1995-01-01 PRES 18 F 1963-08-24 152750.0 1000.0 4220.0
1 000020 MICHAEL L THOMPSON BO1 3476 2003-10-10 MANAGER 18 M 1978-02-02 942500 800.0 3300.0
2 000030 SALLY A KWAN co1 4738 2005-04-05 MANAGER 20 F 19710511 982500 800.0 3060.0
3 000050 JOHN S GEYER EO1 6789 1979-08-17 MANAGER 16 M 1955-00-15 801750 800.0 3214.0
4 000060 IRVING = STERN D11 6423 2003-09-14 MANAGER 16 M 1975-07-07 722500 500.0 2580.0
37 200240 ROBERT M MONTEVERDE D21 3780 2004-12-05 CLERK 17 M 1984-03-31 377600 600.0 2301.0
38 200280 EILEEN R SCHWARTZ E11 8997 1997-03-24 OPERATOR 17 F 1966-03-28 46250.0 500.0 2100.0
39 200310 MICHELLE - SPRINGER E11 3332 1994-09-12 OPERATOR 12 F 19610421 359000 300.0 1272.0
40 200330 HELENA WONG E21 2103 2006-02-23 FIELDREP 14 F 1971-07-18 353700 500.0 2030.0
41 200340 ROY R ALONZO E21 5698 1997-07-05 FIELDREP 16 M 1956-05-17 318400 500.0 1907.0
42 rows x 14 columns

22 I1BM Cloud H

22

The Formatting is Weird

*» The default output is in Pandas Dataframes format

In [7]: %sql select * from employee

Qut[7]:

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

0 000010 CHRISTINE I HAAS AOO 3978 1995-01-01 PRES 18 F 1963-08-24 152750.0 1000.0 4220.0
1 000020 MICHAEL L THOMPSON BO1 3476 2003-10-10 MANAGER 18 M 1978-02-02 94250.0 800.0 3300.0
2 000030 SALLY A KWAN Cco1 4738 2005-04-05 MANAGER 20 F 1971-05-11 98250.0 800.0 3060.0
3 000050 JOHN B GEYER EO1 6789 1979-08-17 MANAGER 16 M 1955-09-15 80175.0 800.0 3214.0
4 000060 IRVING & STERN D11 6423 2003-09-14 MANAGER 16 M 1975-07-07 72250.0 500.0 2580.0
37 200240 ROBERT M MONTEVERDE D21 3780 2004-12-05 CLERK 17 M 1984-03-31 37760.0 600.0 2301.0
38 200280 EILEEN R SCHWARTZ Ell 8997 1997-03-24 OPERATOR 17 F 1966-03-28 46250.0 500.0 2100.0
39 200310 MICHELLE = SPRINGER Ell 3332 1994-09-12 OPERATOR 12 F 1961-04-21 35900.0 300.0 12720
40 200330 HELENA WONG E21 2103 2006-02-23 FIELDREP 14 F 1971-07-18 35370.0 500.0 2030.0
41 200340 ROY R ALONZO E21 5698 1997-07-05 FIELDREP 16 M 1956-05-17 31840.0 500.0 1907.0

42 rows x 14 columns

" [t shows the first 5 and last 5 lines of output

* [f you want to see more, you need to either use a special flag (-all), change some
settings, or use —grid format

23 IBM Cloud

23

Grid Format is Nicer
» Use the —grid option after the %sqgl command

In [8]: %sql -grid select = from employee

EMPNO FIRSTNME MIDINIT LASTNAME
0 000010 CHRISTINE [HAAS
1 000020 MICHAEL L THOMPSON
2 000030 SALLY A KWAN
3 000050 JOHN B GEYER
4 000060 IRVING F STERN

* Now you can scroll the answer set, change the column sizes, and sort by

any column

WORKDEPT

ADO

BO1

col

EO1

D11

™A

PHONENO

3978

3476

4738

6789

6423

LT

*You can set this as the default viewing format by changing an OPTION

24

IBM Cloud

24

25

Options

*There are some options available for changing the behavior of the commands:

In [11]: %sql option list

(MAXROWS) Maximum number of rows displayed: 10

(MAXGRID) Maximum grid display size: 5

(RUNTIME) How many seconds to a run a statement for performance testing: 1
(DISPLAY) Use PANDAS or GRID display format for output: PANDAS

— MAXROWS — The number of rows that Pandas display will show before hiding part of the
answer set

— MAXGRID — The maximum number of lines shown in a scrollable display
— RUNTIME — When timing statement execution, how many seconds to run
— DISPLAY — Use Pandas or Grid format for output
— LIST — Display current settings
*The command allows multiple options to be set at atime
%sql option maxgrid 10 display grid

IBM Cloud

25

SQL Statements versus SQL Blocks

» So far we have only shown single SQL statements
*What if you want to do a large block of SQL?

»Use the %%sql format to tell the program that everything in the Cell is Db2

In [12]:

msql

DROP TABLE NIGHTSHOW;

CREATE TABLE NIGHTSHOW (
ANNOUNCER VARCHAR(20) NOT NULL,
SPEAKER VARCHAR(20),
TITLE VARCHAR (50)

);

INSERT INTO NIGHTSHOW VALUES
('Martin’, 'Geoxrge', 'Jupyter Stuff');

SQLO204N "DB2INST1.NIGHTSHOW" is an undefined name. SQLSTATE=42704 SQLCODE=-204

Command completed.

26

IBM Cloud

26

Delimiters

*The default is a semi-colon (;) to delimit SQL statements
»Use the —d flag to change it to the at (@) sign

*»Errors are ignored during the execution of a block
— If you want to suppress the errors, use the —quiet or —q flag
— Output is still displayed

In [15]: %%sql -q -d

DROP TABLE NIGHTSHOW@

CREATE TABLE NIGHTSHOW (
ANNOUNCER VARCHAR(20) NOT NULL,
SPEAKER VARCHAR(20),
TITLE VARCHAR(50)

)@

INSERT INTO NIGHTSHOW VALUES
('Martin’', 'Geoxge', 'Jupyter Stuff')@

SELECT # FROM NIGHTSHOW@

Qut[15]:
ANNOUNCER SPEAKER TITLE

0 Martin George Jupyter Stuff

27

IBM Cloud

27

28

SELECT Into a Variable

=You can assign the result set to a Python variable

In [16]: show = %sql SELECT = FROM NIGHTSHOW

*Onceitisin avariable you can display it, or slice it using Pandas syntax
— Useful if you know the name of the column but not the position

In [20]: |5h{}w

Out[20]:
ANNOUNCER SPEAKER TITLE

0 Martin George Jupyter Stuff

In [19]: show['ANNOUNCER'][]P]
Out[19]: 'Martin’

IBM Cloud

28

SELECT Into a Variable

*You can also ask for the data in "raw" array format

In [21]: show = %sql -r SELECT * FROM NIGHTSHOW

In [23]: show

Out[23]: [['ANNOUNCER', 'SPEAKER', 'TITLE'l, ['Martin', 'George', 'Jupyter Stuf
T']]

*The first row of the array (row 0) is the column name and the remainder are the

data rows

In [24]: show[1][0]
Out[24]: 'Martin'

29

IBM Cloud

29

Using Parameters

*You can supply Python variables to the statements by using the format
var_name

In [26]: speaker = "George"

In [27]: %sql SELECT * FROM NIGHTSHOW WHERE SPEAKER = :speaker

Qut[27]:
ANNOUNCER SPEAKER TITLE

0 Martin George Jupyter Stuff

|t also works with IN lists!
In [33]: empnos = ['000010', '000020', '000030']

In [38]: %sql SELECT EMPNO, LASTNAME FROM EMPLOYEE WHERE EMPNO IN (:empnos)

Qut([38]:
EMPNO LASTNAME
0 000010 HAAS
1 000020 THOMPSON
2 000030 KWAN
30 IBM Cloud IBM

30

String Substitution

»Use the {varname} format to supply values for SQL syntax items (columns,
etc...)

In [55]: empnos = ['000010', '000020', '000030"]
columns = 'EMPNO,LASTNAME'

In [56]: %sql SELECT {columns} FROM EMPLOYEE WHERE EMPNO IN (:empnos)

Qut[56]:
EMPNO LASTNAME

0 000010 HAAS
1 000020 THOMPSON
2 000030 KWAN

»Can only be used with single row %sql commands

31 IBM Cloud
31

32

INSERT

" INSERTs need some care when dealing with strings
*You can use typical INSERT with VALUEs clause

In [62]: %sgl INSERT INTO SOMEDATA VALUES 'Hello’

*»Quote inside strings is tricky — two quotes = one guote

In [63]: %¥sql INSERT INTO SOMEDATA VALUES 'Hello''s’

nt

*Or just use variables! (No Quotes required!)

In [64]: hello = "Hellos's"
~sql INSERT INTO SOMEDATA VALUES :hello

IBM Cloud

32

JSON INSERTS
»Create a JSON Object (Dictionary) and INSERT directly

In [73]: %%sql
DROP TABLE SOMEDATA;
CREATE TABLE SOMEDATA (
JSON VARCHAR(255)
);

Command completed.

In [74]: x = §
"first" : "Martin",
"last" : "Hubel"
§

In [75]: %e%sql
INSERT INTO SOMEDATA VALUES :x;
SELECT = FROM SOMEDATA;

Qut([75]:
JSON

0 {"first": "Martin", "last": "Hubel"}

33

IBM Cloud

33

Simple Plotting

*The %sqgl command allows for simple charting:
— -pie — Pie chart
— -bar — Bar chart

— -line — Line chart

%sql —bar SELECT WORKDEPT, AVG(SALARY) FROM EMPLOYEE \
GROUP BY WORKDEPT

In [57]: %sql -bar SELECT WORKDEPT, AVG(SALARY) FROM EMPLOYEE GROUP BY WORKDEPT pE—
- A00 B01 .

-

80000 - 80000

60000 1 70000

40000 60000

50000

20000 1

04 ADD B01 1 D11 D21 EO1 Ell E21
WORKDEPT

1
1
1
1

ADD
BO1
Ell
E21

- ~
(]]
WORKDEPT

34 IBM Cloud
34

Commit Scope

*The default mode of SQL execution is AUTOCOMMIT ON

— Every statement is committed
=You can turn AUTOCOMMIT on and off

%sql AUTOCOMMIT OFF

— The AUTOCOMMIT state remains in this state for the lifetime of the connection
= Use the COMMIT statement at the end of the transaction

— COMMIT WORK - Closes the statement and commits all work

— COMMIT HOLD - Keeps the statement open for further work

— ROLLBACK — Rolls back all work done to this point

35 |IBM Cloud

35

Stored Procedures

*You can call stored procedures using the following syntax
result,p_a,p_b,p_c, ... =%sqgl —r CALL proc(a,b,c,....)
*» This syntax (with the —r flag) will return the results, and the parameters
—p_a, p_b, p_c are the values supplied or returned by the procedure

*If you only want the result set, use the statement by itself or assign it to a
variable

X = %sqgl CALL ADMIN_CMD('DESCRIBE TABLE EMPLOYEE")

1U] mSql CALL ADMIN_CMD('DESCRIBE

COLNAME TYPESCHEMA TYPENAME LENGTH SCALE NULLABLE

EMPN TER
STNM HAR
MIDIN: YSIBM CHARACTER
TNAN HAR
EPT CTER
E ARA
HDAT
1 SALARY DEC
BONUS DEC
COMM DEX(
1 x 6 colum

36 IBM Cloud
36

Prepared Statements

*The PREPARE and EXECUTE commands are useful in situations where you
want to repeat an SQL statement multiple times

*There isn't any benefit from using these statements for simple tasks that may
only run occasionally

*The benefit of PREPARE/EXECUTE is more evident when dealing with a large
number of transactions that are the same

37 |IBM Cloud
n 37

Prepared Statements

* The PREPARE statement can only be used for the following SQL statements:
— SELECT
— INSERT
— UPDATE
— DELETE
— MERGE

*To prepare a statement, you must use the following syntax:
stmt = %sqgl PREPARE sql
*The stmt variable is used when executing the statement

38 |IBM Cloud
N 38

Prepared Statements

*Once you have prepared a statement, you can execute it using the following
syntax:

%sqgl EXECUTE :stmt USING v1,v2,v3,....
*You must provide the statement variable :stmt to the EXECUTE statement
*The values that following the USING clause are either constants or Python

variable names separated by commas

— If you place a colon : in front of a variable name, it will be immediately substituted into the
statement:

%sqgl EXECUTE :stmt USING 3,'asdsa’,24.5,:x,y

— The :x will be materialized directly into the parameter list, while the variable y will be
bound to the statement and the contents dynamically transferred

39 |IBM Cloud
N 39

Prepared Statements

*With Python variables, you can specify four types of data:
— char - character data type (default)
— bin, binary - binary data
— dec, decimal - decimal data type
—int, integer - numeric data type
*These modifiers are added after the variable name by using the @ symbol:
%sqgl EXECUTE :stmt USING v1@int, v2@binary, v3@decimal

*The default is to treat variables as character strings

40 IBM Cloud
0 ou 40

Prepared Example

In [124]: %%sql -q
DROP TABLE INTEGERS;
CREATE TABLE INTEGERS (
ANUMBER INT
);

In [125]: {1 =1
stmt = %sql prepare INSERT INTO INTEGERS VALUES ?
while i <= 10:
%sql execute :stmt using i@integer
i=1i+1
%sql SELECT = FROM INTEGERS

Out[125]:
ANUMBER

© 00 ~N o 00 A& W N = O
© 00 N O O A W ON =

[y
o

41 IBM Cloud

41

42

More Statement Options

= Additional Options are Available when Running SQL
— -d - Use alternative statement delimiter @
— -t,-time - Time the statement execution
— -0,-quiet - Suppress messages
— -] - JSON formatting of the first column
— -Jjson - Retrieve the result set as a JSON record
— -a,-all - Show all output
— -pb,-bar - Bar chart of results
— -pp,-pie - Pie chart of results
— -pl,-line - Line chart of results
— -sampledata Load the database with the sample EMPLOYEE and DEPARTMENT tables
— -r,-array - Return the results into a variable (list of rows)
— -e,-echo - Echo macro substitution
— -h,-help - Display help information
— -grid - Display results in a scrollable grid

IBM Cloud

42

Example: Retrieve Data as JSON Record

In [127]: %sql -json SELECT * FROM EMPLOYEE FETCH FIRST ROW ONLY

Out[127]: [{'empno': '000O10’,
‘firstnme': 'CHRISTINE',
'‘midinit': 'I',
'lastname’: 'HAAS',
'‘'workdept': 'AGO',
‘phoneno’: '3978',
‘hiredate’': '1995-01-01',

'job': 'PRES b
‘edlevel’: 18,
weEy e VR

'birthdate’': '1963-08-24"',
'salary’': 152750.0,
‘bonus’': 1000.0,

‘comm': 4220.0%]

43 IBM Cloud

Macros

*The %sqgl command also allows the use of macros

— Macros are used to substitute text into SQL commands that you execute
— Macros substitution is done before any SQL is executed

— This allows you to create macros that include commonly used SQL commands rather than having to type

them in
— Macros can access parameters and have limited logic capability

%%sql define describe
#

The DESCRIBE command can either use the syntax DESCRIBE TABLE <name> or DESCRIBE TABLE SELECT
#

var syntax Syntax: DESCRIBE [TABLE name | SELECT statement]
#

Check to see what count of variables is... Must be at least 2 items
it

if {argc} < 2
exit {syntax}
endif
CALL ADMIN_CMD('{*@}');

44

IBM Cloud

44

Predefined Macros
» DESCRIBE [SELECT or TABLE]

— Describe the contents of a table or a select statement

*IST TABLES [FOR ALL | FOR SCHEMA name]

— List tables in the current schema or database

In [130]: %sql LIST TABLES FOR SCHEMA DB2INST1

Qut[130]:

TABNAME TABSCHEMA DESCRIPTION

0 ACT DB2INST1 Table
1 ADEFUSR DB2INST1 Materialized query table
2 AS_EMP DB2INST1 Table
3 BASE_EMP_TXS DB2INST1 Table
4 CENTRAL_LINE DB2INST1 Table
63 VPSTRDE1 DB2INST1 View
64 VPSTRDE2 DB2INST1 View
65 VSTAFAC1 DB2INST1 View
66 VSTAFAC2 DB2INST1 View
67 XYCOORDS DB2INST1 Table

68 rows x 3 columns

45

IBM Cloud

45

46

Live Labs
=Visit ibm.com/demos and search for Db2

*New Live Labs being made available shortly:

— Db2 Magic Commands and Programming in Python

— Db2 11.1 SQL Features and Functions

— Db2 11.5 SQL Features and Functions

— An Introduction to External Tables

— Using the New JSON ISO Functions in Db2

— The Db2 Data Management Console and RESTful APIs
— Db2 on Cloud Tutorial

— Using Visual Studio Code and the GO Language

= Steps:
— 1. Sign up for an IBM userid
— 2. Select your lab

— 3. Wait for the email that the lab is ready (2-3 minutes)
— 4. Explore!

IBM Cloud

IBM Digital Technical Engagement

46

Additional Resources

= Visit the Digital Technical Engagement Site

— The Digital Technical Engagement group (DTE) provides
videos, product tours, and product labs for you to try out
technology at your leisure

— The product labs are fully functional servers that are
provisioned for you

— These servers contain the base products (Db2) along with
self-paced examples

— https://www.ilbm.com/demos
» Read the new Db2 JSON Book
— 1bm.biz/db2json
» GitHub Db2-Samples
— There are a number of Db2 sample programs available on GitHub
— https://github.com/IBM/db2-samples

IBM Demos

Seeing is believing

47 IBM Cloud

https://www.ibm.com/demos
ibm.biz/db2json
https://github.com/IBM/db2-samples
https://github.com/IBM/db2-samples
https://github.com/IBM/db2-samples
https://github.com/IBM/db2-samples
https://github.com/IBM/db2-samples

Db2 and Jupyter Notebooks

George Baklarz
Db2 Digital Technical Engagement

48 IBM Cloud

